Evaluating a Novel Kind of Retrieval Models Based on Relevance Decision Making in a Relevance Feedback Environment
نویسندگان
چکیده
This paper presents the results of our participation in the relevance feedback track using our novel retrieval models. These models simulate human relevance decision-making. For each document location of a query term, information from its document-context at that location determines the relevance decision outcomes there. The relevance values for all documents locations of all query terms in the same document are combined to form the final relevance value for that document. Two probabilistic models are developed, and one of them is directly related to the TF-IDF term weights. Our initial retrieval is a passage-based retrieval. Passage scores of the same document are combined by the Dombi fuzzy disjunction operator. Later, we found that the Markov random field (MRF) model produces better results than our initial retrieval system (without relevance information). If we apply our novel retrieval models using the initial retrieval list of the MRF model, the retrieval effectiveness of our models will be improved. These informal run results using the MRF model used in conjunction with our novel models are also presented.
منابع مشابه
Document Image Retrieval Based on Keyword Spotting Using Relevance Feedback
Keyword Spotting is a well-known method in document image retrieval. In this method, Search in document images is based on query word image. In this Paper, an approach for document image retrieval based on keyword spotting has been proposed. In proposed method, a framework using relevance feedback is presented. Relevance feedback, an interactive and efficient method is used in this paper to imp...
متن کاملبازیابی تعاملی تصاویر طبیعت با بهره گیری از یادگیری چند نمونه ای
Content-based image retrieval (CBIR) has received considerable research interest in the recent years. The basic problem in CBIR is the semantic gap between the high-level image semantics and the low-level image features. Region-based image retrieval and learning from user interaction through relevance feedback are two main approaches to solving this problem. Recently, the research in integra...
متن کاملQuery expansion based on relevance feedback and latent semantic analysis
Web search engines are one of the most popular tools on the Internet which are widely-used by expert and novice users. Constructing an adequate query which represents the best specification of users’ information need to the search engine is an important concern of web users. Query expansion is a way to reduce this concern and increase user satisfaction. In this paper, a new method of query expa...
متن کاملSemiautomatic Image Retrieval Using the High Level Semantic Labels
Content-based image retrieval and text-based image retrieval are two fundamental approaches in the field of image retrieval. The challenges related to each of these approaches, guide the researchers to use combining approaches and semi-automatic retrieval using the user interaction in the retrieval cycle. Hence, in this paper, an image retrieval system is introduced that provided two kind of qu...
متن کاملEvaluating Construction Projects by a New Group Decision-Making Model Based on Intuitionistic Fuzzy Logic Concepts
Select an appropriate project is a main key for contractors to increase their profits. In practice, in this area the uncertainty and imprecise of the involved parameters is so high. Therefore, considering fuzzy sets theory to deal with uncertainly is more appreciate. The aim of this paper is present a multi-criteria group decision-making model under an intuitionistic fuzzy set environment. Henc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008